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The effect of temperature pulsations in the surrounding medium on a steady-state 
chemically reacting system is analyzed using equations for the particle tempera- 
ture probability distribution function. Single-mode and bimodal distributions, 
realized respectively at low and high chemical reaction rates, are considered. 

A quite large number of studies have already investigated the effect of turbulent pul- 
sations on homogeneous chemical reactions [I, 2]. At the same time, heterogeneous combus- 
tion of a solid fuel has usually been considered only in the quasi-laminar approximation 
[3]. The problem of heterogeneous reaction regimes in the presence of fluctuations in heat 
and mass liberation coefficients was considered in [4, 5]. In consequence of the signifi- 
cantly nonlinear dependence of heterogeneous reaction rate on temperature, the problem of 
the effect of temperature pulsations in an external turbulent medium upon combustion is no 
less important. 

We will consider nonsteady combustion of a small isolated particle in the assumption 
that change in particle radius over the time required to achieve the steady state is negli- 
ble. The turbulent random temperature field of the external medium will be modeled by a 
Gaussian random process with specified autocorrelation function. The reverse effect of the 
heterogeneous combustion process on temperature change in the external medium may be 
neglected, since we are considering an isolated particle. This approximation describes 
combustion processes in a highly rarefied gas-dispersed flow with adequate accuracy. 

Change in instantaneous particle temperature over time is described by the equation 

d~p ._ ~--~p + q ( ~ ) .  ( i )  
dT T t 

The first term on the right side of Eq. (i) defines heat exchange between the particle and 
surrounding medium, and the second is the result of heat liberation from the heterogeneous 
combustion. The temperature dependence of heat liberation (combustion rate) for sufficiently 
small particles, the combustion of which occurs in the kinetic regime, can be described by 
the Arrhenius law 

q =  kexp(--E/ROp), k=const .  (2) 

Because of the random character of change in the temperature of the turbulent medium 
over time Eq. (i) is stochastic. The random process characterized by Eq. (i) can also be 
described by the Fokker-Planck equation for the probability density of particle temperature 
[6, 7]. The probability density can be obtained conveniently from Eq. (i) by the functional 
differentiation method [8]. 

We introduce the particle temperature probability density 

P(O, r )~  <6(~--~,(~))>, (3) 

where averaging is performed over realizations of the turbulent medium temperature field. 
Differentiating Eq. (3) over time, with consideration of Eq. (i) we obtain 

I 1 �84 
aP _ o \ o t - e , ,  7 .  (4 )  
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The temperature of the surrounding medium can be written in the form of average and 
pulsation components 

t = Y + t ' ,  Y = < t > ,  < t ' > - - O .  

Then, with consideration of the relationship 

< 8 (~ -- % ~)) % (~) > = ~p O, ~) 

(4) we obtain the following expression for the particle temperature probability from Eq. 
density: 

0--7-+ - - +  q @  P = - - -  ( s )  

In order to obtain a closed equation for P, it is necessary to determine the correla- 
tion <t'P>. To do this we make use of the Furuts-Novikov expression [8], assuming that the 
random field of temperature pulsations t' is Gaussian: 

8P [z (~)1 
( z (z) R [z ('~)l > -= ~ < z (z) z ('q) > 8z (xa) dxl, (6 )  

where z(m) is a random process, R[z] is a functional dependent on the random process, and 
6P/6z is the functional derivative. From Eq. (6) it follows that 

6P(t~, "c) d1:x, (7 )  < t ' P > = ~ < t ' ( ~ ) t ' ( ~ l ) >  6 ~ ' ~ )  

where in accordance with Eq. (3) 

8P (t~, z) 0 6~p (T) \ (8 )  
~t' (,q) O~ ~8  (~ -- ~p (-~)) ~t' (-q) / 

To calculate the functional derivative 60p/6t' in Eq. (8) we will limit our examination 
to cases close to static equilibrium, where the deviation of the temperature from the aver- 
age value @ is small, and the scale of turbulent pulsations of medium parameters T L (the 
Lagrangian time scale of the turbulence) is much less than the characteristic combustion 
rate scale Zq = I/q$. 

In this case the term describing heat liberation can be linearized and Eq. (i) written 
in the form 

dt~p t - - ~ v  -6 q(@) + qo (~v - -  0), (9 )  
d'~ ~t 

where  q~ = (dq/d~p).~v=o. 

The solution of Eq. (9) will be 

~v(-~)--~p(O)exp(---~/-~l~)+ [ 1@1) + q (O( ' q ) )+qo ( ' q )O( ' q )  exp "~--~1 d, rl ' (10)  
g T t " '~ t*  

! 
where  ~t*  = z t / ( 1  - ~ tq0 )  i s  t h e  p a r t i c l e  t h e r m a l  r e l a x a t i o n  t ime  w i t h  c o n s i d e r a t i o n  o f  com- 

! 

b u s t i o n ;  t h e n  in  o r d e r  t h a t  t h e  q u a n t i t y  mt ,  be p o s i t i v e ,  t h e  c o n d i t i o n  ~tq0 < 1 must  be 
f u l f i l l e d .  

We a p p l y  t h e  f u n c t i o n a l  d i f f e r e n t i a t i o n  o p e r a t o r  t o  Eq. ( 1 0 ) ,  t a k i n g  i n t o  c o n s i d e r a t i o n  
t h e  c a u s a l i t y  p r i n c i p l e  6 R [ z ( m ) ] / d z ( ~ l )  = 0 f o r  �9 < ~z and t h e  a b s e n c e  o f  d e p e n d e n c e  o f  t h e  
initial condition • on t' As a result we obtain 

8~p(~_____~) _ 1 exp(  "~-- '~1) 
St' (-q) .~- ,, .% ~l ('~ - -  "q), ( 11  ) 

where ~ (~) = 0, �9 < 0; B (~) = I, �9 ~ 0. 

With consideration of Eqs. (8) and (Ii), Eq. (7) takes on the form 

OP (12) 
< t'P > = - - f t  < t'~ > O0 ' 

where 
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ft= [ ( / ' ( '0 t ' (T+~)> exp( - ~-~--,) ~ (13) 
< t" (x) > *t* "5* 

Substituting Eq. (12) in Eq. (5), we obtain a closed equation for the particle temper- 
ature probability density in the turbulent medium 

OP 0 ( T- -~  + q o ) ) P =  h<t"> OzP (14) 

To determine the coefficient ft, characterizing the intensity of particle temperature 
pulsations, we approximate the two-dimensional temperature pulsation autocorrelation func- 
tion by a step function [9] 

< t' (~) t' (-~+ ~) > = 1 -- ~ (~ -- TL). (15)  
< t "  ('0 > 

With cons idera t ion  of Eq. (15), i t  fol lows from Eq. (13) t ha t  

[t % x~, . 1--[3~ 1--exp , (16) 

where 13 = TL/T , ~ = xt/T L are parameters defining the ratios of the external flux tempera- q 
ture pulsation scale T L to the characteristic chemical reaction time Xq and the particle 
thermal relaxation xt" 

According to Eq. (16), the coefficient ft takes on positive values over the entire 
range of change of the parameters ~ and 13, not only for 13 << i. Consequently, for all val- 
ues of S and 8, Eq. (14) is a parabolic type equation, i.e., it describes diffusion-type 
processes. By solving Eq. (14) we can calculate the mean particle temperature Of=f~}PdO 

and the temperature pulsation dispersion <0 "'>=f(O--O)2pdt% It should be noted that Eq. 
(14) is integrodifferential, since it contains the quantity @, which appears in 13 and cor- 
respondingly in ft" 

In the steady state it follows from Eq. (14) that the probability density satisfies the 
equation 

[ T~_____#~ +q(t~)]p = ft<t"> OPs 
% ~t Off ' 

the solution of which with consideration of Eq. (2) for the combustion rate has the form 

Ps(9) = Cexp(--U), C= const, (17) 

where U is  the p o t e n t i a l  defined by the expression 

( 1 I T - -  ~ ]  
[ % [~ 2 ,  

/t < t" > ~t 
v (~) = [ 

( T - -  1 t%) 
__ *t 0 ' ' 2  . 
[ h < r' > ~, 

+ &~E2 (l/e)], O > 0, 

~ 0 .  

Here E~(x) = Se-X~T-Zdz is an integral exponential function. 
I 

It is evident from Eq. (17) that the function Ps(%) takes on extremal values at those 
points where the relationship 

T = ~--%q(~) (18) 
is  s a t i s f i e d .  

With consideration of Eq. (2), condition (18) coincides with the expression for determ- 
ining the steady-state particle temperature in the absence of medium temperature fluctua- 
tions. According to Eq. (18), the steady-state probability density has a single maximum 
when Eq. (18) has a single root, or two maxima and a minima when Eq. (18) has three roots. 
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Upon imposition of the additional limitation Ttq e << i, when, according to Eq. (18), 
the steady-state probability density has one maximum and a crisis-free combustion regime is 
realized, the approximate solution of Eq. (14) can be written as a Gauss,an distribution [6] 

1 exp{ [~--0(~)]2 } 
p ( o , ~ ) -  F2~<~,~(~) > 2<#'(~)> " (19 )  

The time dependence of Eq. (19) is parametric and manifested through the quantities 0 
and <%,z>, which are defined by the equations 

" (d~q ldeJ )  where qo .... ~p=e" 

dO T -- 0 1 
---~-- = - - - - - - ~  + q (@) § --~- qo < ~'~ >, (20) 

d<~" > 2ft 2 (I -- ~tq~ < ~,'), (21) 
d~ = ~-~ - <t'~> ~ 

Equation (20) can be obtained directly by averaging Eq. (i). In the quasi-steady ap- 
proximation it follows from Eq. (21) that 

<~'~>= f~ <t"> 
1 - -  "rtqo ( 2 2  ) 

An argument in favor of use of Eq. (22) is the fact that at ~tq0 << I the temperature 
pulsation relaxation time in accordance with Eq. (21) is almost twice as small as the mean 
temperature relaxation time according to Eq. (20), i.e., the quasi-steady-state with re- 
spect to <%,2> is established almost twice as rapidly as with respect to O. 

It follows from Eq. (20) that temperature pulsations may lead to both increase (for 
0 < EI2R, when q~ > 0) or decrease (for @ > E/2R, when q~ < 0) of particle steady-state tem- 
perature. 

Equation (22), which establishes a relationship between the temperature pulsations of 
the particle and those of the surrounding medium, can be obtained directly from Eq. (i). To 
a linearized Eq. (I) there corresponds the following expression which in the quasi-steady 
approximation relates the two-dimensional correlation moments of particle temperature pulsa- 
tions ~ = <%'(T)%'(~ + ~)> and those of the surrounding medium ~ = <t'(~)t'(~ + $)>: 

d2q) q) ~F 
. . . .  (23) 

I t s  s o l u t i o n ,  s a t i s f y i n g  t h e  boundary  c o n d i t i o n s  

~ = 0  d~ = 0 ,  ~-~oo ~ - ~ 0 ,  
a~ 

has the form 

"~l*/U~exp < / ' ~ " iTexp(\ [-1 ] ," ~ 'x[~ 
"[l* 2"~t t g 

+ exp - -  ~(~1) d~1 

Hence, since <%,i> = ~(0), Eq. (22) follows. 

In the absence of combustion Eq. (22) transforms to the expression obtained in [9]. In 
the presence of combustion, since dq/d%p > 0, positive feedback exists: particle tempera- 
ture fluctuations produce pulsations in the combustion rate, which in turn increase the in- 
tensity of the former. 

When the condition ~tq' << 1 is disrupted, the steady-state distribution of Eq. (17) 8 
becomes bimodal and is characterized by two minima of the potential U in the region of low 
temperatures %1 and high %2 (Fig. i). In this case the Gauss,an distribution of Eq. (19) 
becomes invalid and cannot describe possible transitions of the system through the potential 
barrier from one steady state to the other under the influence of pulsations in the tempera- 
ture of the surrounding medium. The value of the potential barrier [U(%,) - U(%i) I increases 
with increase in combustion rate. The minimum of the probability density, located at % = %,, 
where %, is defined from the condition B~U/802 = 0, corresponds to an unstable stationary 
state of the system. 
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Fig. i. Overall form of bistable potential for various com- 
bustion rates: i) kx t = 2.2; 2) 2.5. 

Fig. 2. Probability of situation in high temperature state 
%2 for various initial particle temperature values: a) %o < 
%~, b) %0 > O,; i) ~ = 0.i; 2) 1.0; 3) i0.0. 

As has been shown in a number of studies on nonequilibrium phase transitions under the 
action of external noise [6, 7, i0, ii], the problem of determining the highest possible 
value of the temperature of a particle which had an initial temperature in the region of 
the unstable steady-state can be solved using split probabilities 

Yll(l~O) ~---I.t* Ps-I (%9')d0]/[ j. ~-1 (~)dl~], 
~o ~t 

(24) 

The values of ~i and ~2 characterize the probability of transition of a particle having an 
initial temperature O0, to a stable temperature state %1 or %2- 

In the case of small values of the diffusion coefficient ft<t'2>/xt Eq. (24) admits 
the asymptotic representation [7] 

u (~o) - -  u 0 , )  xt exp f,~ , ~o<~,, 
~ =  U'(~o) 2~ h <  ) /~t  

1 ~ IU"(~*)] /t<t'-~ t ] 
"q exp U(~o)--U(~,) , ~o>0~-. 

rl~ = 1 + U' (~o)  2:r h < t'~ > l'r~ " 

Figure 2 shows the change in probability of finding a particle in the steady-state 
characterized by the high temperature %2 with increase in intensity of pulsations of the 
surrounding medium temperature %2 and various values of the initial temperature %0. Calcu- 
lations show that fine particles (~ = 0.i) will practically always have a steady-state 
temperature corresponding to the value of the minimum in the potential U closest to %o" 
However, with growth in thermal inertia of the particle (~ = i) the probability of jumping 
through the potential barrier increases. The fact indicates the possibility of extinction 
or ignition of large particles due to pulsation of surrounding medium temperature. With 
increase in combustion rate the probability of such transitions decreases, because of in- 
crease in the height of the potential barrier between the two stable steady states, 

Thus, the proposed model permits determination of the most probable values of burning 
particle temperature in the presence of fluctuations in the temperature of the surrounding 
medium. 

NOTATION 

�9 , time; O(@), actual (average) particle temperature; t(T), actual (average) tempera- 
ture of surrounding medium; P, probability density of particle temperature distribution; ~t, 
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particle thermal relaxation time; E, activation energy; R, universal gas constant; U, poten- 
tial; 6(x), delta-function; q, heterogeneous reaction rate; ~, split probability. Subscripts: 
o, initial state; i, 2, parameters of two stable states; p, particle. 
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PERCOLATION AND DIFFUSION IN FRACTAL TURBULENCE 

A. G. Bershadskii* UDC 532.517.4 

Experimental data on passive-impurity diffusion in fractal turbulence are inter- 
preted on the basis of a percolational model. 

INTRODUCTION 

The geometry of the eddy field in turbulized fluid is extremely fragmentary. Fragments 
of fluid with high vorticity are interspersed with fragments with low vorticity. Taking 
into account that in steady turbulent motion there is practically no transfer of passive im- 
purity from the turbulent fragments to laminar fragments, but simply motion of the impurity 
with (and within) the turbulent fragments, fractal theory may be used to describe turbulent 
diffusion [i, 2]. The fact is that the problem of passive-impurity diffusion in homogene- 
ous turbulence is still far from solution. Experiments with hydrodynamic lattices to model 
homogeneous turbulence give inconsistent data, and remain to be interpreted [3, 4]. In 
large-scale experiments in the ocean, which may also model homogeneous turbulence, the well- 
known Richardson 4/3 law for the effective diffusion coefficient is also found to be nonuni- 
versal [5]. The reason for this is unclear. Could it be that the assumption of statistical 
homogeneity [6] is too limiting? Recently, this hypothesis has been weakened, substituting 
the less restrictive requirement of geometric self-similarity within some range of scales 
(e.g., see [i, 2]). This fractal approach may allow some of the features of impurity trans- 
port noted above to be taken into account and yield a theory which approximates the experi- 
mental effects. 

Several fractal models of turbulence now exist (e.g., see [i, 2, 7]) and more will cer- 
tainly appear in the future, since the approach to self-similar motion may take different 
forms, converging asymptotically on similar quasi-stable states [8]. The choice of a par- 
ticular model of this process is largely dictated by considerations of convenience. In the 
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